Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Gels ; 10(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38534624

RESUMO

Novel functional biomaterials are expected to bring about breakthroughs in developing immunotherapy and regenerative medicine through their application as drug delivery systems and scaffolds. Nanogels are defined as nanoparticles with a particle size of 100 nm or less and as having a gel structure. Nanogels have a three-dimensional network structure of cross-linked polymer chains, which have a high water content, a volume phase transition much faster than that of a macrogel, and a quick response to external stimuli. As it is possible to transmit substances according to the three-dimensional mesh size of the gel, a major feature is that relatively large substances, such as proteins and nucleic acids, can be taken into the gel. Furthermore, by organizing nanogels as a building block, they can be applied as a scaffold material for tissue regeneration. This review provides a brief overview of the current developments in nanogels in general, especially drug delivery, therapeutic applications, and tissue engineering. In particular, polysaccharide-based nanogels are interesting because they have excellent complexation properties and are highly biocompatible.

2.
Dent J (Basel) ; 12(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38248224

RESUMO

INTRODUCTION: Prevention of tooth loss contributes to an extended life expectancy, namely longevity. Aging-related oral hypofunction, including tooth loss, markedly increases the risks of functional disorder and mortality. Dysbiosis of the oral microbiome has recently been associated with various diseases, such as liver cirrhosis, pancreatic cancer, colorectal cancer, and inflammatory bowel disease. Therefore, the relationship between the oral microbiome and systemic health has been attracting increasing attention. In the present study, we examined oral function and the oral microbiome in the elderly in a world-leading longevity area. MATERIALS AND METHODS: An oral examination, chewing ability/tongue-lip motor function/saliva tests, and a metagenomic analysis with a 16S rRNA gene-targeting next-generation sequencer were conducted on 78 subjects aged ≥80 years. Twenty-six healthy individuals aged between 20 and 39 years were also investigated as controls. The data obtained were statistically analyzed. The protocol of the present study was approved by the Ethics Review Board of our university (ERB-C-885). RESULTS: Chewing ability, tongue-lip motor function, and saliva volume were normal in elderly subjects with a current tooth number ≥20, but were significantly lower in those with a current tooth number <20. The oral microbiome in elderly subjects with a current tooth number ≥20 and young controls differed from that in elderly subjects with a current tooth number <20. CONCLUSION: Tooth number ≥20 in elderly subjects in the longevity area contributed to the maintenance of both oral function and the diversity of the oral microbiome.

3.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958551

RESUMO

Raman spectroscopy was applied to study the structural differences between herpes simplex virus Type I (HSV-1) and Epstein-Barr virus (EBV). Raman spectra were first collected with statistical validity on clusters of the respective virions and analyzed according to principal component analysis (PCA). Then, average spectra were computed and a machine-learning approach applied to deconvolute them into sub-band components in order to perform comparative analyses. The Raman results revealed marked structural differences between the two viral strains, which could mainly be traced back to the massive presence of carbohydrates in the glycoproteins of EBV virions. Clear differences could also be recorded for selected tyrosine and tryptophan Raman bands sensitive to pH at the virion/environment interface. According to the observed spectral differences, Raman signatures of known biomolecules were interpreted to link structural differences with the viral functions of the two strains. The present study confirms the unique ability of Raman spectroscopy for answering structural questions at the molecular level in virology and, despite the structural complexity of viral structures, its capacity to readily and reliably differentiate between different virus types and strains.


Assuntos
Infecções por Vírus Epstein-Barr , Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 4 , Multiômica
4.
ACS Infect Dis ; 9(11): 2226-2251, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37850869

RESUMO

The latest RNA genomic mutation of SARS-CoV-2 virus, termed the Omicron variant, has generated a stream of highly contagious and antibody-resistant strains, which in turn led to classifying Omicron as a variant of concern. We systematically collected Raman spectra from six Omicron subvariants available in Japan (i.e., BA.1.18, BA.2, BA.4, BA.5, XE, and BA.2.75) and applied machine-learning algorithms to decrypt their structural characteristics at the molecular scale. Unique Raman fingerprints of sulfur-containing amino acid rotamers, RNA purines and pyrimidines, tyrosine phenol ring configurations, and secondary protein structures clearly differentiated the six Omicron subvariants. These spectral characteristics, which were linked to infectiousness, transmissibility, and propensity for immune evasion, revealed evolutionary motifs to be compared with the outputs of genomic studies. The availability of a Raman "metabolomic snapshot", which was then translated into a barcode to enable a prompt subvariant identification, opened the way to rationalize in real-time SARS-CoV-2 activity and variability. As a proof of concept, we applied the Raman barcode procedure to a nasal swab sample retrieved from a SARS-CoV-2 patient and identified its Omicron subvariant by coupling a commercially available magnetic bead technology with our newly developed Raman analyses.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Análise Espectral Raman , RNA
5.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686157

RESUMO

The aim of this study was to elucidate the chemistry of cellular degeneration in human neuroblastoma cells upon exposure to outer-membrane vesicles (OMVs) produced by Porphyromonas gingivalis (Pg) oral bacteria by monitoring their metabolomic evolution using in situ Raman spectroscopy. Pg-OMVs are a key factor in Alzheimer's disease (AD) pathogenesis, as they act as efficient vectors for the delivery of toxins promoting neuronal damage. However, the chemical mechanisms underlying the direct impact of Pg-OMVs on cell metabolites at the molecular scale still remain conspicuously unclear. A widely used in vitro model employing neuroblastoma SH-SY5Y cells (a sub-line of the SK-N-SH cell line) was spectroscopically analyzed in situ before and 6 h after Pg-OMV contamination. Concurrently, Raman characterizations were also performed on isolated Pg-OMVs, which included phosphorylated dihydroceramide (PDHC) lipids and lipopolysaccharide (LPS), the latter in turn being contaminated with a highly pathogenic class of cysteine proteases, a key factor in neuronal cell degradation. Raman characterizations located lipopolysaccharide fingerprints in the vesicle structure and unveiled so far unproved aspects of the chemistry behind protein degradation induced by Pg-OMV contamination of SH-SY5Y cells. The observed alterations of cells' Raman profiles were then discussed in view of key factors including the formation of amyloid ß (Aß) plaques and hyperphosphorylated Tau neurofibrillary tangles, and the formation of cholesterol agglomerates that exacerbate AD pathologies.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Porphyromonas gingivalis , Peptídeos beta-Amiloides , Lipopolissacarídeos , Corpos de Inclusão , Vesícula
6.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628838

RESUMO

Hydrolytic reactions taking place at the surface of a silicon nitride (Si3N4) bioceramic were found to induce instantaneous inactivation of Human herpesvirus 1 (HHV-1, also known as Herpes simplex virus 1 or HSV-1). Si3N4 is a non-oxide ceramic compound with strong antibacterial and antiviral properties that has been proven safe for human cells. HSV-1 is a double-stranded DNA virus that infects a variety of host tissues through a lytic and latent cycle. Real-time reverse transcription (RT)-polymerase chain reaction (PCR) tests of HSV-1 DNA after instantaneous contact with Si3N4 showed that ammonia and its nitrogen radical byproducts, produced upon Si3N4 hydrolysis, directly reacted with viral proteins and fragmented the virus DNA, irreversibly damaging its structure. A comparison carried out upon testing HSV-1 against ZrO2 particles under identical experimental conditions showed a significantly weaker (but not null) antiviral effect, which was attributed to oxygen radical influence. The results of this study extend the effectiveness of Si3N4's antiviral properties beyond their previously proven efficacy against a large variety of single-stranded enveloped and non-enveloped RNA viruses. Possible applications include the development of antiviral creams or gels and oral rinses to exploit an extremely efficient, localized, and instantaneous viral reduction by means of a safe and more effective alternative to conventional antiviral creams. Upon incorporating a minor fraction of micrometric Si3N4 particles into polymeric matrices, antiherpetic devices could be fabricated, which would effectively impede viral reactivation and enable high local effectiveness for extended periods of time.


Assuntos
Herpesvirus Humano 1 , Humanos , Compostos de Silício/farmacologia , Antivirais/farmacologia , DNA Viral
7.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047667

RESUMO

This study probed in vitro the mechanisms of competition/coexistence between Streptococcus sanguinis (known for being correlated with health in the oral cavity) and Streptococcus mutans (responsible for aciduric oral environment and formation of caries) by means of quantitative Raman spectroscopy and imaging. In situ Raman assessments of live bacterial culture/coculture focusing on biofilm exopolysaccharides supported the hypothesis that both species engaged in antagonistic interactions. Experiments of simultaneous colonization always resulted in coexistence, but they also revealed fundamental alterations of the biofilm with respect to their water-insoluble glucan structure. Raman spectra (collected at fixed time but different bacterial ratios) showed clear changes in chemical bonds in glucans, which pointed to an action by Streptococcus sanguinis to discontinue the impermeability of the biofilm constructed by Streptococcus mutans. The concurrent effects of glycosidic bond cleavage in water-insoluble α - 1,3-glucan and oxidation at various sites in glucans' molecular chains supported the hypothesis that secretion of oxygen radicals was the main "chemical weapon" used by Streptococcus sanguinis in coculture.


Assuntos
Cárie Dentária , Streptococcus sanguis , Humanos , Streptococcus mutans , Biofilmes , Boca/microbiologia , Glucanos/farmacologia
8.
Allergol Int ; 72(4): 557-563, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37061391

RESUMO

BACKGROUND: Eosinophilic otitis media (EOM) is a refractory condition associated with eosinophilic chronic rhinosinusitis and bronchial asthma. EOM is characterized by type-2 inflammation and is refractory to various treatments. We investigated the efficacy of dupilumab, interleukin-4 receptor alpha antagonist, for patients with EOM complicated by eosinophilic chronic rhinosinusitis (ECRS). METHODS: Between April 2017 and April 2022, we treated 124 patients with dupilumab for refractory CRS or bronchial asthma. Of these, 14 had EOM concurrently, and 10 of them who had been treated for >6 months were included in our study. We retrospectively evaluated the efficacy of dupilumab by the amount of systemic corticosteroid used, the frequency of exacerbations, severity score of EOM, computed tomography (CT) score of temporal bones, and pure tone audiometry. We also enrolled 8 EOM patients without dupilumab treatment as a control group. RESULTS: Dupilumab significantly improved the amount of systemic corticosteroid used and the frequency of exacerbation and compared with before dupilumab was used (p = 0.01 and <0.01, respectively). All patients could be weaned from systemic-corticosteroid therapy by 54 weeks of dupilumab use. The severity score of EOM and CT score for temporal bones were significantly lower than before the treatment (p = 0.01 and 0.01, respectively). Compared to the control group, the systemic corticosteroid used and severity scores were improved in the dupilumab group (p = 0.02 and < 0.01, respectively). CONCLUSIONS: Dupilumab could be used to wean patients from systemic corticosteroids with the improvement of severity score in EOM associated with ECRS and bronchial asthma.


Assuntos
Asma , Otite Média , Sinusite , Humanos , Estudos Retrospectivos , Otite Média/complicações , Asma/complicações , Asma/tratamento farmacológico , Doença Crônica , Sinusite/complicações , Sinusite/tratamento farmacológico , Corticosteroides/uso terapêutico
9.
J Funct Biomater ; 13(4)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36412841

RESUMO

The microstructural and molecular-scale variations induced by laser irradiation treatment on human teeth enamel in comparison with synthetic hydroxyapatite (HAp) were examined through Raman microprobe spectroscopy as a function of irradiation power. The results demonstrated that laser irradiation could modify stoichiometry, microstructure, and the population of crystallographic defects, as well as the hardness of the materials. These modifications showed strong dependences on both laser power and initial nonstoichiometric structure (defective content of HPO4), because of the occurrence of distinct reactions and structural reconstruction. The reported observations can redirect future trends in tooth whitening by laser treatment and the production of HAp coatings because of the important role of stoichiometric defects.

10.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36233043

RESUMO

This study targets on-site/real-time taxonomic identification and metabolic profiling of seven different Candida auris clades/subclades by means of Raman spectroscopy and imaging. Representative Raman spectra from different Candida auris samples were systematically deconvoluted by means of a customized machine-learning algorithm linked to a Raman database in order to decode structural differences at the molecular scale. Raman analyses of metabolites revealed clear differences in cell walls and membrane structure among clades/subclades. Such differences are key in maintaining the integrity and physical strength of the cell walls in the dynamic response to external stress and drugs. It was found that Candida cells use the glucan structure of the extracellular matrix, the degree of α-chitin crystallinity, and the concentration of hydrogen bonds between its antiparallel chains to tailor cell walls' flexibility. Besides being an effective ploy in survivorship by providing stiff shields in the α-1,3-glucan polymorph, the α-1,3-glycosidic linkages are also water-insoluble, thus forming a rigid and hydrophobic scaffold surrounded by a matrix of pliable and hydrated ß-glucans. Raman analysis revealed a variety of strategies by different clades to balance stiffness, hydrophobicity, and impermeability in their cell walls. The selected strategies lead to differences in resistance toward specific environmental stresses of cationic/osmotic, oxidative, and nitrosative origins. A statistical validation based on principal component analysis was found only partially capable of distinguishing among Raman spectra of clades and subclades. Raman barcoding based on an algorithm converting spectrally deconvoluted Raman sub-bands into barcodes allowed for circumventing any speciation deficiency. Empowered by barcoding bioinformatics, Raman analyses, which are fast and require no sample preparation, allow on-site speciation and real-time selection of appropriate treatments.


Assuntos
Candidíase , beta-Glucanas , Antifúngicos/farmacologia , Candida auris , Quitina , Glucanos , Água
11.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897669

RESUMO

This study presents a set of vibrational characterizations on a nanogel-cross-linked porous freeze-dried gel (NanoCliP-FD gel) scaffold for tissue engineering and regenerative therapy. This scaffold is designed for the in vitro culture of high-quality cartilage tissue to be then transplanted in vivo to enable recovery from congenital malformations in the maxillofacial area or crippling jaw disease. The three-dimensional scaffold for in-plate culture is designed with interface chemistry capable of stimulating cartilage formation and maintaining its structure through counteracting the dedifferentiation of mesenchymal stem cells (MSCs) during the formation of cartilage tissue. The developed interface chemistry enabled high efficiency in both growth rate and tissue quality, thus satisfying the requirements of large volumes, high matrix quality, and superior mechanical properties needed in cartilage transplants. We characterized the cartilage tissue in vitro grown on a NanoCliP-FD gel scaffold by human periodontal ligament-derived stem cells (a type of MSC) with cartilage grown by the same cells and under the same conditions on a conventional (porous) atelocollagen scaffold. The cartilage tissues produced by the MSCs on different scaffolds were comparatively evaluated by immunohistochemical and spectroscopic analyses. Cartilage differentiation occurred at a higher rate when MSCs were cultured on the NanoCliP-FD gel scaffold compared to the atelocollagen scaffold, and produced a tissue richer in cartilage matrix. In situ spectroscopic analyses revealed the cell/scaffold interactive mechanisms by which the NanoCliP-FD gel scaffold stimulated such increased efficiency in cartilage matrix formation. In addition to demonstrating the high potential of human periodontal ligament-derived stem cell cultures on NanoCliP-FD gel scaffolds in regenerative cartilage therapy, the present study also highlights the novelty of Raman spectroscopy as a non-destructive method for the concurrent evaluation of matrix quality and cell metabolic response. In situ Raman analyses on living cells unveiled for the first time the underlying physiological mechanisms behind such improved chondrocyte performance.


Assuntos
Cartilagem , Tecidos Suporte , Cartilagem/metabolismo , Células Cultivadas , Humanos , Nanogéis , Análise Espectral , Engenharia Tecidual/métodos , Tecidos Suporte/química
12.
ACS Infect Dis ; 8(8): 1563-1581, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35819780

RESUMO

Raman spectroscopy uncovered molecular scale markers of the viral structure of the SARS-CoV-2 Delta variant and related viral inactivation mechanisms at the biological interface with silicon nitride (Si3N4) bioceramics. A comparison of Raman spectra collected on the TY11-927 variant (lineage B.1.617.2; simply referred to as the Delta variant henceforth) with those of the JPN/TY/WK-521 variant (lineage B.1.617.1; referred to as the Kappa variant or simply as the Japanese isolate henceforth) revealed the occurrence of key mutations of the spike receptor together with profound structural differences in the molecular structure/symmetry of sulfur-containing amino acid and altered hydrophobic interactions of the tyrosine residue. Additionally, different vibrational fractions of RNA purines and pyrimidines and dissimilar protein secondary structures were also recorded. Despite mutations, hydrolytic reactions at the surface of silicon nitride (Si3N4) bioceramics induced instantaneous inactivation of the Delta variant at the same rate as that of the Kappa variant. Contact between virions and micrometric Si3N4 particles yielded post-translational deimination of arginine spike residues, methionine sulfoxidation, tyrosine nitration, and oxidation of RNA purines to form formamidopyrimidines. Si3N4 bioceramics proved to be a safe and effective inorganic compound for instantaneous environmental sanitation.


Assuntos
COVID-19 , Análise Espectral Raman , Cerâmica/química , Cerâmica/farmacologia , Humanos , Purinas , RNA , SARS-CoV-2/genética , Compostos de Silício , Tirosina
13.
Front Microbiol ; 13: 896359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694304

RESUMO

The multidrug-resistant Candida auris often defies treatments and presently represents a worldwide public health threat. Currently, the ergosterol-targeting Amphotericin B (AmB) and the DNA/RNA-synthesis inhibitor 5-flucytosine (5-FC) are the two main drugs available for first-line defense against life-threatening Candida auris infections. However, important aspects of their mechanisms of action require further clarification, especially regarding metabolic reactions of yeast cells. Here, we applied Raman spectroscopy empowered with specifically tailored machine-learning algorithms to monitor and to image in situ the susceptibility of two Candida auris clades to different antifungal drugs (LSEM 0643 or JCM15448T, belonging to the East Asian Clade II; and, LSEM 3673 belonging to the South African Clade III). Raman characterizations provided new details on the mechanisms of action against Candida auris Clades II and III, while also unfolding differences in their metabolic reactions to different drugs. AmB treatment induced biofilm formation in both clades, but the formed biofilms showed different structures: a dense and continuous biofilm structure in Clade II, and an extra-cellular matrix with a "fluffy" and discontinuous structure in Clade III. Treatment with 5-FC caused no biofilm formation but yeast-to-hyphal or pseudo-hyphal morphogenesis in both clades. Clade III showed a superior capacity in reducing membrane permeability to the drug through chemically tailoring chitin structure with a high degree of acetylation and fatty acids networks with significantly elongated chains. This study shows the suitability of the in situ Raman method in characterizing susceptibility and stress response of different C. auris clades to antifungal drugs, thus opening a path to identifying novel clinical solutions counteracting the spread of these alarming pathogens.

14.
J Inorg Biochem ; 234: 111884, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35716550

RESUMO

In this study, we monitored the effect of Al3+ ions on mesenchymal cells (KUSA-A1) and human fibroblasts (NHDF) by means of in vitro experiments by culturing the cells with addition of small concentrations of aluminum ions (i.e., 0.1, 1, 10, and 100 ppm). Bone formation test was then conducted using KUSA-A1. Small concentrations of aluminum ions delayed but did not completely inhibit cell proliferation. The amount of bone tissue decreased as the concentration of Al3+ increased and crystallinity changes were also detected by Raman spectroscopic experiments. Moreover, Al3+ ions greatly affected both structure and chemistry of bone tissues with mineral nodules becoming larger and atomic substitution of Ca with Al in bone tissue being more preponderant with increasing Al3+ concentration. Such effects in turn impaired the balance between mineral and collagen in the formed bone tissue.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Alumínio/toxicidade , Colágeno , Humanos , Íons/farmacologia
15.
Biomed Mater ; 17(4)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35504268

RESUMO

Poly-caprolactone is one of the most promising biocompatible polymers on the market, in particular for temporary devices that are not subjected to high physiological loads. Even if completely resorbable in various biological environments, poly-caprolactione does not play any specific biological role in supporting tissue regeneration and for this reason has a limited range of possible applications. In this preliminary work, for the first time l-dopa and fibroin have been combined with electrospun poly-caprolactone fibers in order to induce bioactive effects and, in particular, stimulate the proliferation, adhesion and osteoconduction of the polymeric fibers. Results showed that addition of low-molecular weight fibroin reduces the mechanical strength of the fibers while promoting the formation of mineralized deposits, when testedin vitrowith KUSA-A1 mesenchymal cells. l-dopa, on the other hand, improved the mechanical properties and stimulated the formation of agglomerates of mineralized deposits containing calcium and phosphorous with high specific volume. The combination of the two substances resulted in good mechanical properties and higher amounts of mineralized deposits formedin vitro.


Assuntos
Fibroínas , Nanofibras , Regeneração Óssea , Levodopa , Poliésteres/farmacologia , Polímeros , Engenharia Tecidual/métodos , Tecidos Suporte
16.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628169

RESUMO

Oral candidiasis, a common opportunistic infection of the oral cavity, is mainly caused by the following four Candida species (in decreasing incidence rate): Candida albicans, Candida glabrata, Candida tropicalis, and Candida krusei. This study offers in-depth Raman spectroscopy analyses of these species and proposes procedures for an accurate and rapid identification of oral yeast species. We first obtained average spectra for different Candida species and systematically analyzed them in order to decode structural differences among species at the molecular scale. Then, we searched for a statistical validation through a chemometric method based on principal component analysis (PCA). This method was found only partially capable to mechanistically distinguish among Candida species. We thus proposed a new Raman barcoding approach based on an algorithm that converts spectrally deconvoluted Raman sub-bands into barcodes. Barcode-assisted Raman analyses could enable on-site identification in nearly real-time, thus implementing preventive oral control, enabling prompt selection of the most effective drug, and increasing the probability to interrupt disease transmission.


Assuntos
Candida , Candidíase Bucal , Candida/química , Candida/genética , Candida albicans , Candidíase Bucal/diagnóstico , Quimiometria , Análise Espectral Raman/métodos
17.
Mater Sci Eng C Mater Biol Appl ; 135: 112686, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35581096

RESUMO

As an emerging additive manufacturing (AM) technique, melt electrospinning writing (MEW) is used to fabricate three-dimensional (3D) submicron filament-based scaffolds with adjustable pore size and customized structure for bone regeneration. Poly(L-lactic acid) (PLLA) scaffold with excellent biodegradability and biocompatibility is first successfully manufactured using our self-assembled MEW device. However, the ultralow cell affinity and poor bioactivity severely hamper their practical applications in bone tissue engineering. These issues are caused by the severe inherent biologically inert, hydrophobicity as well as the smooth surface of the MEW PLLA filaments. In this study, a green and robust alkaline method is applied to modify the scaffold surface and to improve the bioactivity of the MEW PLLA scaffold. Without deterioration in mechanical property but robust surface hydrophilicity, the optimal MEW PLLA scaffold shows promoted surface roughness, enhanced filament tensile modulus (~ 2 folds of the as-prepared sample), and boosted crystallizability (ultrahigh WAXD intensity). Moreover, after being cultured with KUSA-A1 cells, the 0.5 M NaOH, 2 h treated MEW PLLA scaffold exhibits higher osteoinductive ability and increased immature bone tissue amounts (3 times of controlled scaffold). Thus, the flexible surface functionalization by the specific alkaline treatment was found to be an effective method for the preparation of bioactivated MEW PLLA scaffolds with promoted bone regeneration.


Assuntos
Poliésteres , Tecidos Suporte , Regeneração Óssea , Osso e Ossos , Interações Hidrofóbicas e Hidrofílicas , Poliésteres/química , Poliésteres/farmacologia , Engenharia Tecidual/métodos , Tecidos Suporte/química
18.
Adv Sci (Weinh) ; 9(3): e2103287, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34877818

RESUMO

The multiple mutations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus have created variants with structural differences in both their spike and nucleocapsid proteins. While the functional relevance of these mutations is under continuous scrutiny, current findings have documented their detrimental impact in terms of affinity with host receptors, antibody resistance, and diagnostic sensitivity. Raman spectra collected on two British variant sub-types found in Japan (QK002 and QHN001) are compared with that of the original Japanese isolate (JPN/TY/WK-521), and found bold vibrational differences. These included: i) fractions of sulfur-containing amino acid rotamers, ii) hydrophobic interactions of tyrosine phenol ring, iii) apparent fractions of RNA purines and pyrimidines, and iv) protein secondary structures. Building upon molecular scale results and their statistical validations, the authors propose to represent virus variants with a barcode specially tailored on Raman spectrum. Raman spectroscopy enables fast identification of virus variants, while the Raman barcode facilitates electronic recordkeeping and translates molecular characteristics into information rapidly accessible by users.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo/química , SARS-CoV-2/química , Análise Espectral Raman , Glicoproteína da Espícula de Coronavírus/química , Humanos , Proteínas do Nucleocapsídeo/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Reino Unido
19.
Front Microbiol ; 12: 769597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867902

RESUMO

Invasive fungal infections caused by yeasts of the genus Candida carry high morbidity and cause systemic infections with high mortality rate in both immunocompetent and immunosuppressed patients. Resistance rates against antifungal drugs vary among Candida species, the most concerning specie being Candida auris, which exhibits resistance to all major classes of available antifungal drugs. The presently available identification methods for Candida species face a severe trade-off between testing speed and accuracy. Here, we propose and validate a machine-learning approach adapted to Raman spectroscopy as a rapid, precise, and labor-efficient method of clinical microbiology for C. auris identification and drug efficacy assessments. This paper demonstrates that the combination of Raman spectroscopy and machine learning analyses can provide an insightful and flexible mycology diagnostic tool, easily applicable on-site in the clinical environment.

20.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34884934

RESUMO

Silicon nitride (Si3N4) can facilitate bone formation; hence, it is used as a biomaterial in orthopedics. Nevertheless, its usability for dentistry is unexplored. The aim of the present study was to investigate the effect of Si3N4 granules for the proliferation and odontogenic differentiation of rat dental pulp cells (rDPCs). Four different types of Si3N4 granules were prepared, which underwent different treatments to form pristine as-synthesized Si3N4, chemically treated Si3N4, thermally treated Si3N4, and Si3N4 sintered with 3 wt.% yttrium oxide (Y2O3). rDPCs were cultured on or around the Si3N4 granular beds. Compared with the other three types of Si3N4 granules, the sintered Si3N4 granules significantly promoted cellular attachment, upregulated the expression of odontogenic marker genes (Dentin Matrix Acidic Phosphoprotein 1 and Dentin Sialophosphoprotein) in the early phase, and enhanced the formation of mineralization nodules. Furthermore, the water contact angle of sintered Si3N4 was also greatly increased to 40°. These results suggest that the sintering process for Si3N4 with Y2O3 positively altered the surface properties of pristine as-synthesized Si3N4 granules, thereby facilitating the odontogenic differentiation of rDPCs. Thus, the introduction of a sintering treatment for Si3N4 granules is likely to facilitate their use in the clinical application of dentistry.


Assuntos
Diferenciação Celular/fisiologia , Materiais Dentários/química , Polpa Dentária/citologia , Compostos de Silício/química , Animais , Antígenos CD/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Polpa Dentária/metabolismo , Masculino , Microscopia Eletrônica de Varredura , Odontogênese , Espectroscopia Fotoeletrônica , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Análise Espectral Raman , Propriedades de Superfície , Difração de Raios X , Ítrio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...